Home
Class 11
MATHS
" (viii) "tan(2x)/(3)=sqrt(3)...

" (viii) "tan(2x)/(3)=sqrt(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

General solution of tan((2x)/(3))=sqrt(3) is

Solve the following trigonometric equations, (i) cot^(2)x+(3)/("sin"x)+3=0 (ii) "tan"^(2)x-(1+sqrt(3))"tan"x - sqrt(3)=0 (iii) 3"tan"^(2)x+2sqrt(3)"tan"x-3=0 (iv) "tan"((pi)/(4)+theta)+"tan"((pi)/(4)-theta)=4

tan x*tan(x+(pi)/(3))*tan(x+(2 pi)/(3))=sqrt(3)

tan^(2)x-sqrt(3)tan x=0

tan x=2-sqrt(3)

Solve the following trigonometric equations, "tan" x+"tan" 2x+sqrt(3)"tan" x"tan" 2x =sqrt(3)

If tan theta=(2x-K)/(K sqrt(3)) and tan varphi=(x sqrt(3))/(2K-x), then show that | varphi-theta|=30^(@)

int(dx)/(4sin^(2)x+3cos^(2)x) is equal to a) (sqrt(3))/(4)tan^(-1)""((2tanx)/(sqrt(3)))+C b) (1)/(2sqrt(3))tan^(-1)""((tanx)/(sqrt(3)))+C c) (2)/(sqrt(3))tan^(-1)""((2tanx)/(sqrt(3)))+C d) (1)/(2sqrt(3))tan^(-1)""((2tanx)/(sqrt(3)))+C

tan x>-sqrt(3)

tan x+tan2x+sqrt(3)tan x*tan2x=sqrt(3)