Home
Class 11
MATHS
tan^(-1)((x)/(y))-tan^(-1)[(x-y)/(x+y))...

tan^(-1)((x)/(y))-tan^(-1)[(x-y)/(x+y))

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement 1: tan^(-1)((3)/(4))+tan^(-1)((1)/(7))=(pi)/(4) Statement 2: For x gt 0, Y gt 0 tan^(-1)((x)/(y))+tan^(-1)((y-x)/(y+x))=(pi)/(4)

Statement 1: tan^(-1)((3)/(4))+tan^(-1)((1)/(7))=(pi)/(4) Statement 2: For x gt 0, Y gt 0 tan^(-1)((x)/(y))+tan^(-1)((y-x)/(y+x))=(pi)/(4)

tan ^(-1)((1)/(x+y))+tan ^(-1)((y)/(x^(2)+x y+1))=

Statement -I : tan ^(-1)""((3)/(4))+tan ^(-1) ""((1)/(7))= (pi)/(4) statement -II: "for" x gt 0 , y gt 0 tan^(-1 ) ((x)/(y))+tan^(-1)""((y-x)/(y+x))=(pi)/(4)

Prove that tan^(-1)(1/(x+y))+tan^(-1)(y/(x^2+xy+1) )= cot^(-1)x .

Prove that tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)),xygt-1

tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) holds good for

tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) holds good for

Prove that tan ^(-1)""(1)/(x+y)+ tan ^(-1)""(y)/(x^(2)+xy+1)= cot ^(-1)x.