Home
Class 11
MATHS
lim(x rarr1)(sum(x=1)^(n)x^(r)-n)/(x-1)=...

lim_(x rarr1)(sum_(x=1)^(n)x^(r)-n)/(x-1)=

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr1) (sum_(x=1)^(n)x^(r)-n)/(x-1) is equal to

lim_(xto1) (sum_(r=1)^(n)x^(r)-n)/(x-1) is equal to

lim_(x rarr2)(sum_(r=1)^(n)x^(r)-sum_(r=1)^(n)2^(r))/(x-2)

Evaluate the limit: lim_(x rarr1)(sum_(k=1)^(oo0)x^(k)-100)/(x-1)

lim_(xrarr2)(sum_(r=1)^(n)x^r-sum_(r=1)^(n)2r)/(x-2) is equal to

lim_(xrarr2)(sum_(r=1)^(n)x^r-sum_(r=1)^(n)2^r)/(x-2) is equal to

lim_(x rarr0)((x+1)^(n)-1)/(x)

lim_(x rarr0)((x+1)^(n)-1)/(x)

lim_(x rarr oo)sum_(r=1)^(n)((x+r)^(2010))/((x^(1006)+1)(2x^(1004)+1))=

lim_(x rarr1)((x+x^(2)+x^(3)++x^(n))-n)/(x-1)