Home
Class 11
PHYSICS
AB is a uniformly shaped rod of length L...

AB is a uniformly shaped rod of length L and cross sectional are S, but its density varies with distance from one end A of the rod as `rho=px^(2)+c`, where p and c are positive constants. Find out the distance of the centre of mass of this rod from the end A.

Promotional Banner

Topper's Solved these Questions

  • LINEAR MOMENTUM & ITS CONSERVATION

    PHYSICS GALAXY - ASHISH ARORA|Exercise Practive Exercise|28 Videos
  • LINEAR MOMENTUM & ITS CONSERVATION

    PHYSICS GALAXY - ASHISH ARORA|Exercise Discussio Q|28 Videos
  • KINEMATICS

    PHYSICS GALAXY - ASHISH ARORA|Exercise Unsolved Numerical Pro.|83 Videos
  • NEWTONS LAWS OF MOTION

    PHYSICS GALAXY - ASHISH ARORA|Exercise Unsolved Numerical Problem|81 Videos

Similar Questions

Explore conceptually related problems

The linear density of a thin rod of length 1m lies as lambda = (1+2x) , where x is the distance from its one end. Find the distance of its center of mass from this end.

A rod of length L is placed along the x-axis between x=0 and x=L . The linear mass density (mass/length) rho of the rod varies with the distance x from the origin as rho=a+bx . Here, a and b are constants. Find the position of centre of mass of this rod.

Linear mass density of a rod AB ( of length 10 m) varied with distance x from its end A as lambda = lambda_0 x^3 ( lamda_0 is positive constant). Distance of centre of mass the rod, form end B is

If the linear density (mass per unit length) of a rod of length 3 m is proportional to x , where x , where x is the distance from one end of the rod, the distance of the centre of gravity of the rod from this end is.

A rod of length L is placed along the x-axis between x = 0 and x = L. The linear density (mass/length) lamda of the rod varies with the distance x from the origin as lamda = Rx. Here, R is a positive constant. Find the position of centre of mass of this rod.

A rod of length L is placed along the x-axis between x = 0 and x = L. The linear density (mass/ length) lambda of the rod varies with the distance x from the origin as lambda = Rx . Here, R is a positive constant. Find the position of centre of mass of this rod.

The mass per unit length of a non - uniform rod of length L is given mu = lambda x^(2) , where lambda is a constant and x is distance from one end of the rod. The distance of the center of mas of rod from this end is

The mass per unit length of a non- uniform rod OP of length L varies as m=k(x)/(L) where k is a constant and x is the distance of any point on the rod from end 0 .The distance of the centre of mass of the rod from end 0 is

A uniform thin rod of length 3 L is bent at right angles at a distance L from one end as shown in Fig. If length of rod is 1.8m , find the co-ordinates and position vector of the mass of the system.

The mass per unit length (lambda) of a non-uniform rod varies linearly with distance x from its one end accrding to the relation, lambda = alpha x , where alpha is a constant. Find the centre of mass as a fraction of its length L.