Home
Class 12
MATHS
Prove that: cos ((2pi)/15) . cos ((4pi)...

Prove that: ` cos ((2pi)/15) . cos ((4pi)/15) . cos ((8pi)/15) . cos ((16pi)/15) = 1/16`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that, 16 "cos" (2pi)/15 "cos" (4pi)/15 "cos" (8pi)/15 "cos" (16pi)/15 =1

Prove that: cos ((2 pi) / (15)) * cos ((4 pi) / (15)) * cos ((8 pi) / (15)) * cos ((16 pi) / (15)) = (1) / (16)

Show that 16cos((2pi)/(15))cos((4pi)/(15))cos((8pi)/(15))cos((16pi)/(15))=1

Show that 16cos((2pi)/(15))cos((4pi)/(15))cos((8pi)/(15))cos((16pi)/(15))=1

Show that 16cos((2pi)/(15))cos((4pi)/(15))cos((8pi)/(15))cos((16pi)/(15))=1

Show that 16cos((2pi)/(15))cos((4pi)/(15))cos((8pi)/(15))cos((16pi)/(15)) =1

Prove that cos((2pi)/(15))cos((4pi)/(15))cos((8pi)/(15))cos((14pi)/(15))=1/(16)

Prove that cos "" (2pi)/(15) cos "" (4pi)/(15) cos "" (8pi)/(15) cos "" (14pi)/(15) = (1)/(16).

Show that 16cos((2 pi)/(15))cos((4 pi)/(15))cos((8 pi)/(15))cos((16 pi)/(15))=1

Prove that "cos" (2pi)/15 cdot "cos"(4pi)/15 cdot "cos" (8pi)/15 "cos"(14pi)/15=1/(16)