Home
Class 12
MATHS
" 3.If "A=[[alpha,beta],[gamma,-alpha]]"...

" 3.If "A=[[alpha,beta],[gamma,-alpha]]" is such that "A^(2)=I," then "

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[alpha ,beta],[ gamma , -alpha]] is such that A^2=I , then A) 1+alpha^2+beta gamma=0 B) 1-alpha^2+beta gamma=0 C) 1-alpha^2-beta gamma=0^ D) 1+alpha^2-beta gamma=0

If A=[[alpha,beta],[gamma,alpha]] is such that A^2=I , then (A) 1+alpha^2+betagamma=0 (B) 1-alpha^2+betagamma=0 (C) 1-alpha^2-betagamma=0 (D) 1+alpha^2-betagamma=0

If A=[[alpha,betagamma,alpha]] is such that A^(2)=I, then (A)1+alpha^(2)+beta gamma=0(B)1-alpha^(2)+beta gamma,=0(C)1-alpha^(2)-beta gamma,=0(D)1+alpha^(2)-beta gamma=0

If A=[{:(alpha, beta),(gamma,-alpha):}] is such that A^(2)=I then a) 1+α^2+βγ=0 b) 1-α^2+βγ =0 c) 1α^2-βγ =0 d) 1+α^-2-βγ =0

If A=[alpha beta gamma-alpha] is such that A^(2)=I, then 1+alpha^(2)+beta gamma=0( b) 1-alpha^(2)+beta gamma=0 (c) 1-alpha^(2)-beta gamma=0 (d) 1+alpha^(2)-beta gamma=0

If A=[{:(alpha,beta),(gamma,alpha):}] is such that A^2=I , then 1+alpha^2+betagamma=0 (b) 1-alpha^2+betagamma=0 (c) 1-alpha^2-betagamma=0 (d) 1+alpha^2-betagamma=0

Given that A=[(alpha, beta),(gamma, alpha)] and A^(2) =3I , then :

Given that A=[(alpha, beta),(gamma, - alpha)] and A^2 =3 I then :

If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0 , then the value of |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is

If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0 , then the value of |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is