Home
Class 11
MATHS
tan(cos^(-1)(4)/(5)+tan^(-1)(2)/(3))=(17...

tan(cos^(-1)(4)/(5)+tan^(-1)(2)/(3))=(17)/(6)

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan {cos^(-1)((4)/(5))+tan^(-1)((2)/(3))}=(a)/(b) , where a and b are co-prime natural numbers, then:

tan(cos^(-1)((3)/(5))+tan^(-1)((1)/(4)))

Prove that. tan^(-1)((1)/(4)) +tan^(-1)((2)/(9)) =(1)/(2) cos^(-1) ((3)/(5)) .

The value of tan (cos ^(-1) (4)/(5)+tan ^(-1) (2)/(3)) is

The value of tan[cos^(-1)((4)/(5))+tan^(-1)((2)/(3))] is (6)/(17) (b) (7)/(16) (c) (16)/(7) (d) none of these

Prove the following: tan^(-1)((1)/(4))+tan^(-1)((2)/(9))=(1)/(2)cos^(-1)((3)/(5))

Prove that: tan^(-1)((1)/(4))+tan^(-1)((2)/(9))=(1)/(2)cos^(-1)((3)/(5))

Show that : "tan"^(-1)(1)/(4) +"tan"^(-1)(2)/(9) = (1)/(2) "cos"^(-1)(3)/(5) .

The value of tan[cos^(-1)(4/5)+tan^(-1)(2/3)] is 6/(17) (b) 17/(6) (c) (16)/7 (d) none of these

The value of tan[cos^(-1)(4/5)+tan^(-1)(2/3)] is 6/(17) (b) 7/(16) (c) (16)/7 (d) none of these