Home
Class 12
MATHS
L t(x->oo)(logx^n-[x])/([x])=...

`L t_(x->oo)(logx^n-[x])/([x])=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If L=(lim)_(x->oo)(logx^n-[x])/([x]),\ w h e r e\ n in N ,\ t h e n-2L=

(lim)_(x->oo)(logx^n-[x])/([x]),\ n in N ,\ ([x]\ d e not e s\ t h e\ in t ege r\ l e s stanor\ e q u a l\ to\ x)\

lim_(xrarr oo) (logx^n-[x])/([x]) where n in N and [.] denotes the greatest integer function, is

lim_(xrarr oo) (logx^n-[x])/([x]) where n in N and [.] denotes the greatest integer function, is

lim_(x rarr oo) (logx^(n)-[x])/([x]) , where n in N and [.] denotes the greatest integer function, is

int((logx)^n)/(x)dx=

Find Lt_(x to oo)(logx)/(x)

Evaluate the following limit : (lim)_(x->oo)(logx)/(x^n),\ n >0

Show that Lt_(x to oo)(x-logx)/(x+logx)=1

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is