Home
Class 12
MATHS
" If "y=e^(x+e^(x+t^(*))" - ")," show th...

" If "y=e^(x+e^(x+t^(*))" - ")," show that "(dy)/(dx)=(y)/(1-y)

Promotional Banner

Similar Questions

Explore conceptually related problems

"If "y=e^(x+y)" ,show that "(dy)/(dx)=(y)/(1-y)

If y=e^(x)+e^(x)+e^(((x+rarr oo))), show that (dy)/(dx)=(y)/(1-y)

If y=e^(x+e^(x+e^(x+dotto\ oo))) , show that (dy)/(dx)=y/(1-y) .

If y=e^(x+e^(x+e^((((( tooo))))))), show that (dy)/(dx)=y/(1-y)

If y=e^(x+e^(x+e^(x)+cdots*oo)), prove that (dy)/(dx)=(y)/(1-y)

If e^(y)(x+1)=1, show that (dy)/(dx)=-e^(y)

If y=e^(x^(e ^(x^(...oo)))) ,show that, (dy)/(dx)=(y^(2)logy)/(x(1-y log x logy)) .

If y=e^(x-y) then show that (dy)/(dx) = y/(1+y)

If y=e^x^+e^x^+e^((((( tooo))))),s howt h a t(dy)/(dx)=y/(1-y)