Home
Class 12
MATHS
Let f : R toR " be a real function. The ...

`Let f : R toR " be a real function. The function "f" is double differentiable. If there exists "ninN" and "p inR" such that "lim_(xto oo)x^(n)f(x)=p" and there exists "lim_(x to oo)x^(n+1)f(x), "then"`
`lim_(x to oo) x^(n+2)f''(x)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f : R toR " be a real function. The function "f" is double differentiable. If there exists "ninN" and "p inR" such that "lim_(x to oo)x^(n)f(x)=p" and there exists "lim_(x to oo)x^(n+1)f(x), "then" lim_(x to oo)x^(n+1)f'(x) is equal to

Let f : R to R be a real function. The function f is double differentiable. If there exists ninN and p in R such that lim_(x to oo)x^(n)f(x)=p and there exists lim_(x to oo)x^(n+1)f(x) , then lim_(x to oo)x^(n+1)f'(x) is equal to

Let f : R to R be a real function. The function f is double differentiable. If there exists ninN and p in R such that lim_(x to oo)x^(n)f(x)=p and there exists lim_(x to oo)x^(n+1)f(x) , then lim_(x to oo)x^(n+1)f'(x) is equal to

Let f :R to [0,oo) be such that lim_(xto3) f(x) exists and lim_(x to 3) ((f(x))^2-4)/sqrt(|x-3|)=0 . Then lim_(x to 3) f(x) equals

lim_(x rarr oo) (1+f(x))^(1/f(x))

Let f be continuous function on [0,oo) such that lim _(x to oo) (f(x)+ int _(o)^(x) f (t ) (dt)) exists. Find lim _(x to oo) f (x).

if f (x) = lim _(x to oo) (prod_(i=l)^(n ) cos ((x )/(2 ^(l)))) then f '(x) is equal to:

if f (x) = lim _(x to oo) (prod_(i=l)^(n ) cos ((x )/(2 ^(l)))) then f '(x) is equal to:

Let f:R to R be a positive increasing function with lim_(x to oo) (f(3x))/(f(x))=1 . Then lim_(x to oo) (f(2x))/(f(x))=

Let f:R rarr[0,oo) be such that lim_(x rarr5)f(x) exists and lim_(x rarr5)([f(x)]^(2)-9)/(sqrt(|x-5|))=0 .then,lim_(x rarr6)f(x) equals to