Home
Class 10
MATHS
[(2105120)/(12)" Solre "],[qquad ul(11)"...

[(2105120)/(12)" Solre "],[qquad ul(11)" tan' "ax+(1)/(2)sec^(-1)bx=(11)/(4)]

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)ax+(1)/(2)sec^(-1)bx=(pi)/(4)

tan^(-1)((1)/(2))+tan^(-1)((2)/(11))=

tan ^(-1) (1/11)+tan ^(-1)(2/12)=

"tan"^(-1)5/6+1/2"tan"^(-1)11/60=

tan^(-1)((1)/(4))+tan^(-1)((2)/(11))=

tan ^(-1) "" (1)/(2) + tan ^(-1) "" (2)/(11) = tan ^(-1)""(3)/(4)

Show that ,,tan^(-1)(1)/(2)+tan^(-1)(2)/(11)=tan^(-1)(3)/(4)

Prove that - tan^(-1).(1)/(2)+tan^(-1).(2)/(11)=

"Tan"^(-1)5/6+1/2"Tan"^(-1)11/60=

The integral int(sec^(2)x)/((sec x+tan x)^((9)/(2)))dx equals (for some arbitrary constant K)-(1)/((sec x+tan x)^((11)/(2))){(1)/(11)-(1)/(7)(sec x+tan x)^(2)}+K(1)/((sec x+tan x)^((11)/(2))){(1)/(11)-(1)/(7)(sec x+tan x)^(2)}+K-(1)/((sec x+tan x)^((11)/(2))){(1)/(11)+(1)/(7)(sec x+tan x)^(2)}+K