Home
Class 11
MATHS
sin(A+B)=sin A*cos B+cos A*sin B...

sin(A+B)=sin A*cos B+cos A*sin B

Promotional Banner

Similar Questions

Explore conceptually related problems

Ifsin(A-B)= sin A cosB-cos A sin B and cos(A-B) = cosA cosB + sin A sin B. Find the values of sin 15^@ and cos 15^@ .

Using the fact that sin(A+B)=sin A,A,cos B+cos A sin B and the differentiation,obtain the sum formula for cosines.

Prove that sin(A+B+C)=sin A cos B cos C+cos A sin B cos C+cos A cos B sin C-sin A sin B sin Ccos(A+B+C)=cos A cos B cos C-cos A sin B sin C-sin A cos B sin C-sin A sin B cos C

Prove (i)sin(A+B)+sin(A-B)=2sin A cos B (ii) sin(A+B)-sin(A-B)=2cos A sin B

If A = 60 ^(@) and B = 30 ^(@) , find the value of (sin A cos B+ cos A sin B)^(2) + (cos A cos B - sin A sin B )^(2)

For all values of angle A and B(i)cos(A-B)=cos A cos B+sin A sin B(ii)cos(A+B)=cos A cos B-sin A sin B

If sin A=a cos B and cos A=b sin B then tan^(2)B =

sin 2A + sin 2B + sin 2 (A-B)= A) 4 sin A * sin B * sin (A-B) B) 4 sin A * cos B * cos (A-B) C) 4 cos A * sin B * cos (A-B) D) 4 cos A * cos B * sin (A-B)

(sin^(2)A-sin^(2)B)/(sin A cos A-sin B cos B) is equal to (a) sin A cos A-sin B cos Btan(A-B)(b)tan(A+B)cot(A-B)(d)cot(A+B)

Prove that (1 + sin A) / (cos A) + (cos B) / (1-sin B) = (2sin A-2sin B) / (sin (AB) + cos A-cos B)