Home
Class 12
MATHS
The straight line xcostheta+ysintheta=2 ...

The straight line `xcostheta+ysintheta=2` will touch the circle `x^2+y^2-2x=0` if `theta=npi,n in I Q` (b) `A=(2n+1)pi,n in I` `theta=2npi,n in I` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The straight line xcostheta+ysintheta=2 will touch the circle x^2+y^2-2x=0 if (a) theta=npi,n in I Q (b) A=(2n+1)pi,n in I (c) theta=2npi,n in I (d) none of these

The straight line xcostheta+ysintheta=2 will touch the circle x^2+y^2-2x=0 if (a) theta=npi,n in I Q (b) A=(2n+1)pi,n in I (c) theta=2npi,n in I (d) none of these

The straight line xcostheta+ysintheta=2 will touch the circle x^2+y^2-2x=0 if (a) theta=npi,n in I Q (b) A=(2n+1)pi,n in I theta=2npi,n in I (d) none of these

The straight line x cos theta+y sin theta=2 will touch the circle x^(2)+y^(2)-2x=0 if theta=n pi,n in IQ(b)A=(2n+1)pi,n in Itheta=2n pi,n in I(d) none of these

If A=[costheta-sinthetasinthetacostheta] , then A^T+A=I_2 , if theta=npi,\ \ n in Z (b) theta=(2n+1)pi/2,\ \ n in Z (c) theta=2n\ pi+pi/3,\ \ n in Z (d) none of these

If A=[cos theta-sin theta sin theta cos theta], then A^(T)+A=I_(2), if theta=n pi,n in Z(b)theta=(2n+1)(pi)/(2),quad n in Z(c)theta=2n pi+(pi)/(3),quad n in Z(d) none of these

If cos^2x+cos^2 2x+cos^2 3x=1 then (a) x=(2n+1)pi/4,\ n in I (b) x=(2n+1)pi/2,\ n in I (c) x=npi+-\ pi/6,\ n in I (d) none of these

The function (sin(x+a))/(sin(x+b)) has no maxima or minima if (a) b-a=npi,n in I (b) b-a=(2n+1)pi,n in I (c) b-a=2npi,n in I (d) none of these

The function (sin(x+a))/(sin(x+b)) has no maxima or minima if (a) b-a=npi,n in I (b) b-a=(2n+1)pi,n in I (c) b-a=2npi,n in I (d) none of these

The general solution of cosxcos6x=-1 is (a) x=(2n+1)pi,n in Z (b) x=2npi,n in Z (c) x=npi,n in Z (d) none of these