Home
Class 12
MATHS
int(dx)/(x(x^2+1)equal(A) log|x|-1/2log(...

`int(dx)/(x(x^2+1)`equal(A) `log|x|-1/2log(x^2+1)+C` (B) `log|x|+1/2log(x^2+1)+C`(C) `-log|x|+1/2log(x^2+1)+C`(D) `1/2log|x|+log(x^2+1)+C`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(dx)/(x(x^(2)+1)) equal (A) log|x|-(1)/(2)log(x^(2)+1)+Clog|x|+(1)/(2)log(x^(2)+1)+Cquad -log|x|+(1)/(2)log(x^(2)+1)+Cquad (1)/(2)log|x|+log(x^(2)+1)+C

int(x dx)/((x-1)(x-2) equal (A) log|((x-1)^2)/(x-2)|+C (B) log|((x-2)^2)/(x-1)|+C (C) log|((x-1)^2)/(x-2)|+C (D) log|(x-1)(x-2)|+C

int(x dx)/((x-1)(x-2) equal(A) log|((x-1)^2)/(x-2)|+C (B) log|((x-2)^2)/(x-1)|+C (C) log|((x-1)^2)/(x-2)|+C (D) log|(x-1)(x-2)|+C

2log x-log(x+1)-log(x-1)=

int (dx)/((x+1)(x-2))=A log (x+1)+B log (x-2)+C , where

int (dx)/((x+1)(x-2))=A log (x+1)+B log (x-2)+C , where

int(log_e(x+1)-log_ex)/(x(x+1))dx is equal to (A) -1/2[log(x+1)^2-1/2logx]^2+log_e(x+1)log_ex+C (B) -[(log_e(x+1)-log_ex]^2 (C) c-1/2(log(1+1/x))^2 (D) none of these

int(log_e(x+1)-log_ex)/(x(x+1))dx is equal to (A) -1/2[log(x+1)^2-1/2logx]^2+log_e(x+1)log_ex+C (B) -[(log_e(x+1)-log_ex]^2 (C) c-1/2(log(1+1/x))^2 (D) none of these

int(log(x+1)-log x)/(x(x+1))dx= (A) log(x-1)log x+(1)/(2)(log x-1)^(2)-(1)/(2)(log x)^(2)+c (B) (1)/(2)(log(x+1))^(2)+(1)/(2)(log x)^(2)-log(x+1)log x+c (C) -(1)/(2)(log(x+1)^(2))-(1)/(2)(log x)^(2)+log x*log(x+1)+c (D) [log(1+(1)/(x))]^(2)+c

int1/(x"log"x^(2))dx is equal to a) 1/(2)"log"|"log"x^(2)|+C b) "log"|"log"x^(2)|+C c) 2"log"|"log"x^(2)|+C d) 4"log"|"log"x^(2)|+C