Home
Class 12
MATHS
[" For complex numbers "z(1),z(2)" and "...

[" For complex numbers "z_(1),z_(2)" and "z_(3)" satisfying "],[(z_(1)-z_(3))/(z_(2)-z_(3))=(1-i sqrt(3))/(2)" are the vertices of a triangle which is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

The complex number z_(1),z_(2) and z_(3) satisfying (z_(1)-z_(3))/(z_(2)-z_(3))=(1-i sqrt(3))/(2) are the vertices of a triangle which is :

The complex numbers z_(1) , z_(2) and z_(3) satisfying (z_(1) - z_(3))/(z_(2) - z_(3)) = (1 - isqrt3)/(2) are the vertices of a triangle which is

The complex numbers z_(1), z_(2), z_(3) satisfying (z_(1)-z_(3))/(z_(2)-z_(3))=(1-i sqrt(3))/(2) are the vertices of a triangle which is

Show that the complex numbers z_(1),z_(2),z_(3) satisfying (z_(1)-z_(3))/(z_(2)-z_(3))=(1-sqrt(3))/(2) are the verticels of an equilaterla triangle.

The complex numbers z_1,z_2 and z_3 satisfying (z_1-z_3)/(z_2-z_3)=(1-isqrt3)/2 are the verticles of a triangle which is:

The complex numbers z_1, z_2 and z_3 satisfying (z_1-z_3)/(z_2- z_3)= (1-i sqrt3)/2 are the vertices of triangle, which is :

The complex numbers z_1, z_2 and z_3 satisfying (z_1-z_3)/(z_2-z_3) =(1- i sqrt(3))/2 are the vertices of triangle which is (1) of area zero (2) right angled isosceles(3) equilateral (4) obtuse angled isosceles

The complex numbers z_1 z_2 and z3 satisfying (z_1-z_3)/(z_2-z_3) =(1- i sqrt(3))/2 are the vertices of triangle which is (1) of area zero (2) right angled isosceles(3) equilateral (4) obtuse angled isosceles