Home
Class 12
MATHS
If f(x)=cosx.cos2x.cos4x.cos8x.cos16x ,...

If `f(x)=cosx.cos2x.cos4x.cos8x.cos16x` , then `f'(pi/4)` is :

Text Solution

Verified by Experts

differentiate with respect to x
`f'(x)=-sinx*cos2x*cos4x*cos8x*cos16x-cosx*2sin2x*cos4x*cos16-4cosxcos2xsin4x*cos8x*cos16x-8cosxcos2xcos4xsin8xcos16x-16cosxcos2xcos4xcos8xsin16x`
`f'(pi/4)=-cos(pi/4)*2*sin(pi/2)cospicos2picos4pi`
`=-1/sqrt2*2*1*(-1)*1*1`
`=2/sqrt2=sqrt2`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=cos x cos2x cos4x cos8x cos16x then

If f(x)=cos x cos2x cos4x cos8x cos16x then f'((pi)/(4)) equals

f(x)=cos x*cos2x*cos4x*cos8x.cos16x then find f'((pi)/(4))

If f(x)=cos x cos2x cos4x cos(8x)*cos16x then find f'((pi)/(4))

If f(x) = cos x cos 2x cos 4x cos 8x cos 16x then find f' (pi/4)

If f(x) = cos x cos 2x cos 4x cos 8x cos 16x then find f' (pi/4)

If f(x) = cos x cos 2x cos 4x cos 8x cos 16 x then f^1((pi)/(4)) equals

If f(x) = cos x cos 2x cos 4x cos (8x). cos 16x then find f' (pi/4)