Home
Class 12
MATHS
Find (dy)/(dx) in the following: y=sin^...

Find `(dy)/(dx)` in the following: `y=sin^(-1)((2x)/(1+x^2))`

A

`2/(1+x^2)`

B

`5/(4+x^2)`

C

`1/(3+x^2)`

D

`5/(6+x^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)\), we can follow these steps: ### Step 1: Substitute \(x\) with \(\tan(\theta)\) Let \(x = \tan(\theta)\). Then, we can express \(y\) in terms of \(\theta\): \[ y = \sin^{-1}\left(\frac{2\tan(\theta)}{1+\tan^2(\theta)}\right) \] ### Step 2: Use the double angle identity Using the identity for sine, we know that: \[ \sin(2\theta) = \frac{2\tan(\theta)}{1+\tan^2(\theta)} \] Thus, we can rewrite \(y\) as: \[ y = \sin^{-1}(\sin(2\theta)) = 2\theta \] ### Step 3: Relate \(\theta\) back to \(x\) Since we have \(x = \tan(\theta)\), we can express \(\theta\) as: \[ \theta = \tan^{-1}(x) \] Therefore, we can write: \[ y = 2\tan^{-1}(x) \] ### Step 4: Differentiate both sides with respect to \(x\) Now we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = \frac{d}{dx}(2\tan^{-1}(x)) \] Using the derivative of \(\tan^{-1}(x)\), which is \(\frac{1}{1+x^2}\), we get: \[ \frac{dy}{dx} = 2 \cdot \frac{1}{1+x^2} \] ### Step 5: Final result Thus, the derivative is: \[ \frac{dy}{dx} = \frac{2}{1+x^2} \]

To find \(\frac{dy}{dx}\) for the function \(y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)\), we can follow these steps: ### Step 1: Substitute \(x\) with \(\tan(\theta)\) Let \(x = \tan(\theta)\). Then, we can express \(y\) in terms of \(\theta\): \[ y = \sin^{-1}\left(\frac{2\tan(\theta)}{1+\tan^2(\theta)}\right) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) in the following: y=sin^(-1)((1-x^(2))/(1+x^(2))),0

Find (dy)/(dx) in the following: 2x+3y=sin y

Find (dy)/(dx) in the following: y=sin^(-1)(2x sqrt(1-x^(2))),-(1)/(sqrt(2))

Find (dy)/(dx) in the following: sin^(2)x+cos^(2)y=1

Find (dy)/(dx) in the following 2x + 3y = sin x

Find dy/dx in the following : y=sin^(-1)(2xsqrt(1-x^(2))),-1/sqrt2ltxlt1/sqrt2 .

Find (dy)/(dx) for the function: y=a^((sin^(-1)x)^(2))

Find (dy)/(dx) in the following: 1.2x+3y=sin x2.2x+3y=sin y3.ax+by^(2)=cos y

Find (dy)/(dx) in the following: 1.2x+3y=sin x2.2x+3y=sin y3.ax+by^(2)=cos y

Find the (dy)/(dx) of y=sin^(-1)((1-x^2)/(1+x^2))