Home
Class 12
MATHS
Determine the value of k, if f(x) = {((k...

Determine the value of k, if `f(x) = {((kcosx)/(pi-2x),if x!=(pi)/2),(3,if x = (pi)/2):}`

Text Solution

Verified by Experts

The correct Answer is:
k = 6
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    SUBHASH PUBLICATION|Exercise FIVE MARKS QUESTIONS WITH ANSWERS|15 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    SUBHASH PUBLICATION|Exercise THREE MARKS QUESTIONS WITH ANSWERS|28 Videos
  • CONSTRUCTIONS

    SUBHASH PUBLICATION|Exercise QUESTION|1 Videos
  • DETERMINANT

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|10 Videos

Similar Questions

Explore conceptually related problems

(a) Minimize and Maximize z=600x+400y Subject to the constraints : x+2yle12 2x+yle12 4x+5yge20 and xge0, y ge0 by graphical method. (b) Find the value of k, if f(x)={{:((kcosx)/(pi-2x)",",xne(pi)/(2)),(3",",x=(pi)/(2)):} is continuous at x=(pi)/(2) .

Find the values of k so that the function f is continuous at the indicated point in Exercises 26 to 29. f(x)={{:((k cos x)/(pi -2x)," if "x ne (pi)/(2)),(3," if "x= (pi)/(2)):}" at "x=(pi)/(2) .

Knowledge Check

  • The value of lim_(n rarr pi/2) (cotx-cosx)/((pi-2x)^(3)) , is

    A
    (1/2)
    B
    (1/4)
    C
    (1/8)
    D
    (1/16)
  • The value of the intergal int_0^(pi//2) (phi(x))/(phi (x) + phi(pi/2 -x)) dx is

    A
    `pi//4`
    B
    `pi//2`
    C
    `pi//6`
    D
    `pi`
  • The maximum value of the function f(x) = sin (x+pi/6)+ cos (x+pi/6) in the interval (0, pi/2) occurs at

    A
    `pi/12`
    B
    `pi/6`
    C
    `pi/4`
    D
    `pi/3`
  • Similar Questions

    Explore conceptually related problems

    Find the value of k, for which the function f defined below is continuous : f(x)={{:((kcosx)/(pi -2x),x lt (pi)/(2)),(3, x = (pi)/(2)),((3tan2x)/(2x-pi),x gt (pi)/(2)):} .

    f(x) = {{:((k cos x)/(pi - 2x) "if" , x ne (pi)/(2)),( 3, "if" x=(pi)/(2)):} at x= pi/2 , f (x) is containuous , find the value of k .

    Find the value of k. If f(x) = {{:(kx+1", if "xlepi),(cosx", if "x>pi):} is continuous at x=pi .

    The maximum value of cos ^(2)((pi)/(3)-x)-cos ^(2)((pi)/(3)+x) is

    (cos (pi +x) cos (-x))/( sin (pi -x) cos ((pi )/(2) + x))= cot ^(2) x