Home
Class 12
MATHS
int (e^(tan^(-1)x))/(1+x^2) dx....

`int (e^(tan^(-1)x))/(1+x^2) dx`.

Text Solution

Verified by Experts

The correct Answer is:
`e^(tan^(-1)x) + C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    SUBHASH PUBLICATION|Exercise FIVE MARKS QUESTIONS WITH ANSWERS|14 Videos
  • INTEGRALS

    SUBHASH PUBLICATION|Exercise SIX MARKS QUESTIONS WITH ANSWERS|13 Videos
  • INTEGRALS

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|21 Videos
  • DETERMINANT

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|10 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    SUBHASH PUBLICATION|Exercise TRY YOUR SELF|3 Videos

Similar Questions

Explore conceptually related problems

int (e^(3 tan^(-1)x)/(1+x^(2))) dx

int e^(mtan^(-1)x)/(1+x^(2)) dx =

int (tan^(-1)x)^(3)/(1+x^(2)) dx is equal to

inte^(tan^(-1)x)(1+x/(1+x^(2)))dx is equal to

Find (i) inte^(x)(tan^(-1)x+1/(1+x^(2)))dx (ii) int((x^(2)+1)e^(x))/((x+1)^(2))dx

int e^(tan^(-1)x)/(1+x^(2))[(sec^(-1) sqrt(1+x^(2)))^(2)+ cos^(-1) ((1-x^(2))/(1+x^(2)))]dx, x gt 0

Evaluate : int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

The value of the integral int e^(tan^(-1) x) * ((1 + x + x^(2)))/((1 + x^(2))) dx is equal to

If I = int tan^(-1)((2x)/(1-x^(2)))*dx then I-2x*tan^(-1)x =

int (x^(49) tan^(-1)x^(50))/(1+x^(100)) dx = k[tan^(-1)(x^(50)]^(2) + c then k =