Home
Class 12
MATHS
int(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))...

`int(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x)) dx`.

Text Solution

Verified by Experts

The correct Answer is:
`1/2 log|e^(2x) + e^(-2x)| + C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    SUBHASH PUBLICATION|Exercise FIVE MARKS QUESTIONS WITH ANSWERS|14 Videos
  • INTEGRALS

    SUBHASH PUBLICATION|Exercise SIX MARKS QUESTIONS WITH ANSWERS|13 Videos
  • INTEGRALS

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|21 Videos
  • DETERMINANT

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|10 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    SUBHASH PUBLICATION|Exercise TRY YOUR SELF|3 Videos

Similar Questions

Explore conceptually related problems

Integrate the functions (e^(2x)-e^(-2x))/(e^(2x)+e^(-2x))

int (e^(2x) - 2e^(x))/(e^(2x)+1) dx =

int ((e^(x)-e^(-x))dx)/((e^(x) + e^(-x)) log (cosh x) =

int(e^(2x) -1)/(e^(2x) + 1) dx

If int (3e^(x)-5e^(-x))/(4e^(x)+5e^(-x))dx = ax+b log(4e^(x)+5e^(-x))+c

int(2x^(2) + e^x)dx

int (dx)/(e^(x)+e^(-x)) dx =

The inverse of the function f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))+2 is given by :

int (e^(x) (1+x))/(sin^(2)(xe^(x))) dx =

int e^(x)/((2+e^(x))(e^(x) +1)) dx =