Home
Class 12
MATHS
Prove that int(-a)^(a) dx = {(2int(0)^(a...

Prove that `int_(-a)^(a) dx = {(2int_(0)^(a) f(x) dx, if f(x) "is even"),(0, if f(x) "is odd"):}` and hence evaluate
(d) `int_(-pi//2)^(pi//2)tan^(9) xdx`.

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|21 Videos
  • INTEGRALS

    SUBHASH PUBLICATION|Exercise FIVE MARKS QUESTIONS WITH ANSWERS|14 Videos
  • DETERMINANT

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|10 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    SUBHASH PUBLICATION|Exercise TRY YOUR SELF|3 Videos

Similar Questions

Explore conceptually related problems

Prove that int_(-a)^(a) dx = {(2int_(0)^(a) f(x) dx, if f(x) "is even"),(0, if f(x) "is odd"):} and hence evaluate (b) int_(-pi//2)^(pi//2) sin^(7) x dx .

Prove that int_(-a)^(a) dx = {(2int_(0)^(a) f(x) dx, if f(x) "is even"),(0, if f(x) "is odd"):} and hence evaluate (c) int_(0)^(pi)|cosx|dx .

Prove that int_(-a)^(a) dx = {(2int_(0)^(a) f(x) dx, if f(x) "is even"),(0, if f(x) "is odd"):} and hence evaluate (a) int_(-1)^(1) sin^(5)x cos^(4)xdx .

Prove that int_(-a)^(a)f(x)dx= {(2int_(0)^(a)f(x)dx ,"if f(x) is even function"),(0, "if f(x) is odd function"):} and hence evaluate int_(-(pi)/(2))^((pi)/(2))sin^(7)xdx

Prove that: int_(-a)^(a) f(x) dx = {{:(2int_(0)^(a)f(x)dx, f(x) " is even "),(0, f(x) " is odd"):} and hence Evaluate int_(-t)^(t) sin^(5)(x)cos^(4)(x) dx

Evaluate : int_(-pi/2) ^(pi/2) sin^2x dx

Prove that int_(a)^(b) f(x)dx=int_(a)^(c)f(x)dx+int_(c)^(b)f(x)dx

Prove that int_(0)^(2a) f(x) dx = 2int_(0)^(a) f(x) dx when f(2a -x) = f(x) and hence evaluate int_(0)^(pi) |cos x| dx .

Evaluate int_((-pi)/4)^(pi/4)sin^(2)x dx

Evaluate int_(-pi//2)^(pi//2)(x^(3)+x cosx+tan^(5)x+1)dx