Home
Class 12
MATHS
If f(x) = int(0)^(x) t sin t dt, then f'...

If `f(x) = int_(0)^(x) t sin t dt,` then f'(x) is

A

`cos x + x sin x`

B

`x sin x`

C

`x cos x`

D

`sin x + x cos x`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    SUBHASH PUBLICATION|Exercise SIX MARKS QUESTIONS WITH ANSWERS|13 Videos
  • DETERMINANT

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|10 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    SUBHASH PUBLICATION|Exercise TRY YOUR SELF|3 Videos

Similar Questions

Explore conceptually related problems

For x in 0,(5pi/(2)), define f(x) = int_0^x sqrt(t) sin t dt . Then f has :

If f(x) = int_(2x)^(sinx) cos (t^(3)) dt then f '(x)

If g(x) = int_0^x cos^4 t dt , then g(x + pi) equals:

If g(x) = int_0^x cos 4t dt, then g(x + pi) equals :

If phi(x) = int_(1//x)^(sqrtx) sin(t^2) dt, then phi'(1) is equal to

If f(x)=int_(0)^(x) log ((1-t)/(1+t)) dt , then discuss whether even or odd?

If int_0^pi x f (sin x)dx = A int_0^(pi//2) f (sin x) dx , then A is :

If int_0^(pi) x f (sin x) dx = A int_0^(pi//2) f (sin x) dx , then A is :