Home
Class 12
MATHS
f is a continuous function on the real ...

`f` is a continuous function on the real line. Given that `x^2+(f(x)-2)x-sqrt3 f(x)+2sqrt3-3=0.` Then value of `f(sqrt3)` is (A) can not be determined (B) `ln2 (1-sqrt3)` (C) is zero (D) is `(2 (sqrt3-2))/sqrt3`

Promotional Banner

Similar Questions

Explore conceptually related problems

x^2+(f(x)-2)x-sqrt(3).f(x)+2sqrt(3)-3=0 , then the value of f(sqrt(3))

x^(2)+(f(x)-2)x-sqrt(3).f(x)+2sqrt(3)-3=0, then the value of f(sqrt(3))

x^2+sqrt(3).f(x)+2sqrt(3)-3=0 , then the value of f(sqrt(3))

If f(x)=sqrt(2x-3)+sqrt(7-3x) ,then the value of f'(2) is?

if f(x) is x^(2)-3sqrt(2x)-1 then find the vale of f(3sqrt(2))

If f(x) be continuous function for all real values of x and satisfies, x^2+{f(x)-2}x+2sqrt3-3-sqrt3.f(x)=0, AA x in R .Then find the value of f(sqrt3) .

If : A to R is a real valued function the fomain of the function f(x) = sqrt(x-3) + sqrt(2-x)

Let f:A rarr B be an onto function such that f(x)=sqrt(x-2-2sqrt(x)-3))-sqrt(x-2+2sqrt(x)-3)) ,then set B' is-

Find f(sqrt2) and f(-sqrt3) for the function