Home
Class 12
MATHS
Let omega1 and omega2 be the roots of om...

Let `omega_1` and `omega_2` be the roots of `omega^2+aomega+b=0`. If origin, `omega_1` and `omega_2` form an equilateral triangle then

Promotional Banner

Similar Questions

Explore conceptually related problems

If 1, omega, omega^(2) are cube roots of unity, prove that 1, omega, omega^(2) are vertices of an equilateral triangle

If 1, omega, omega^2 be three roots of 1, show that: (1+omega)^3-(1+omega^2)^3=0

If 1, omega, omega^2 be three roots of 1, show that: (1+omega)^3-(1+omega^2)^3=0

If 1, omega and omega^(2) are the cube roots of unity, then (a+b+c) (a+b omega+c omega^(2))(a+b omega^(2) +c omega)=

If 1, omega, omega^2 be three roots of 1, show that: (1-omega+omega^2)^2+(1+omega-omega^2)^2=-4

If 1, omega, omega^2 be three roots of 1, show that: (1-omega+omega^2)^2+(1+omega-omega^2)^2=-4

If 1, omega and omega^(2) are the cube roots of unity, prove that (a+b omega+c omega^(2))/(c+a omega+b omega^(2))=omega^(2)

If 1,omega,(omega)^2 are the cube roots of unity, then (omega)^2(1+omega)^3-(1+(omega)^2)omega=

If omega is a complex cube root of unity, show that (a+b) + (a omega +b omega^2 )+(a omega^2 +b omega ) =0