Home
Class 12
MATHS
Consider f(x)=x[x]^2log(1+x)2 for -1ltxl...

Consider `f(x)=x[x]^2log_(1+x)2` for `-1ltxlt0` ; `ln(e^(x^2)+(2sqrt({x})))/tansqrt(x)` for `0ltxlt1` where [] and {} are the greatest integer function &fractional part function respectively, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=[x^(2)]+sqrt({x}^(2)), where [] and {.} denote the greatest integer and fractional part functions respectively,then

If f(x) = [x^2] + sqrt({x}^2 , where [] and {.} denote the greatest integer and fractional part functions respectively,then

f(x)=[x^(2)]-{x}^(2), where [.] and {.} denote the greatest integer function and the fractional part function , respectively , is

The range of function f(x)=log_(x)([x]), where [.] and {.} denotes greatest integer and fractional part function respectively

f(x)=cos^-1sqrt(log_([x]) ((|x|)/x)) where [.] denotes the greatest integer function

If f(x)={((a^(2[x]+{x})-1)"/ "(2[x]+{x}),x!=0),(log_(e)a,x=0):} Then at x=0, (where [x] and {x} are the greatest integer function and fraction part of x respectively

If f(x)={((a^(2[x]+{x})-1)","(2[x]+{x}),x!=0),(log_(e)a,x=0):} Then at x=0, (where [x] and {x} are the greatest integer function and fraction part of x respectively

Let f(x) = log _({x}) [x] g (x) =log _({x})-{x} h (x) = log _([x ]) {x} where [], {} denotes the greatest integer function and fractional part function respectively. Domine of h (x) is :