Home
Class 7
MATHS
Show the function, f(x)=(2x(sinx+tanx))...

Show the function, `f(x)=(2x(sinx+tanx))/(2[(x+21pi)/pi]-41)` is symmetric about origin.

Text Solution

Verified by Experts

`f(-x)=-f(x)`
`f(-x)=(2(-x)(sin(-x)+tan(-x)))/(2[-x/pi]+2*21-41)`
`f(-x)=(-2x(-sinx-tanx))/((2-[x/pi]-1)+1)`
`f(-x)=(2x(sinx+tanx))/(-2[x/pi]-2+1)`
`f(-x)=(2x(sinx+tanx))/(-(2[x/pi]+1))`
`f(-x)=-f(x)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the function f(x)=(2x(sinx+tanx))/(2[(x+21pi)/pi]-41) is symmetric about origin.

A function f(x)=(2x(sin x))/(2[(x+21 pi)/(pi)]-41) (1) Even function (3) Neither even nor odd ( 4 ) f(0)=1

Find whether the given function is even or odd function, where f(x)=(x(sinx+tanx))/([(x+pi)/pi-1/2]) , where, [.] denotes greatest integer function.

Let f(x)=(2x(sin x + tanx))/(2[(x+21pi)/(pi)]-41),x != n pi , then f is ( where [.] represents greatest integer function)

Find whether the given function is even or odd: f(x)=(x(sinx+tanx)/([x+pi/pi]-1/2); whether [] denotes the greatest integer function.

Find whether the given function is even or odd: f(x)=x(sinx+tanx)/([(x+pi)/pi]-1/2); where [] denotes the greatest integer function.

If f(x)=(2x(sinx+tanx))/(2[(x+2pi)/(pi)]-3) then it is (where [.] denotes the greatest integer function)

If f(x)=(2x(sinx+tanx))/(2[(x+2pi)/(pi)]-3) then it is (where [.] denotes the greatest integer function)

Show that the function f(x)=|sinx+cosx| is continuous at x=pi .

Show that the functions are injective f(x) = sinx on [ 0, (pi)/(2)]