Home
Class 12
MATHS
int(sintheta)^(costheta)f(xtantheta)dx(w...

`int_(sintheta)^(costheta)f(xtantheta)dx(w h e r etheta!=(npi)/2,n in I))i se q u a lto` (a) `-costhetaint_1^(tantheta)f(xsintheta)dx` (b)`-tanthetaint_(costheta)^(sintheta)f(x)dx` (c)`sinthetathetaint_1^(tantheta)f(xcostheta)dx` (d)`1/(tantheta)thetaint_(sintheta)^(sinthetatantheta)f(x)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(sintheta)^(costheta)f(xtantheta)dx(w h e r etheta!=(npi)/2,n in I)) is equal to (a) -costhetaint_1^(tantheta)f(xsintheta)dx (b) -tanthetaint_(costheta)^(sintheta)f(x)dx (c) sinthetathetaint_1^(tantheta)f(xcostheta)dx (d) 1/(tantheta)thetaint_(sintheta)^(sinthetatantheta)f(x)dx

int_(sintheta)^(costheta)f(xtantheta)dx(w h e r etheta!=(npi)/2,n in I)) is equal to (a) -costhetaint_1^(tantheta)f(xsintheta)dx (b) -tanthetaint_(costheta)^(sintheta)f(x)dx (c) sinthetathetaint_1^(tantheta)f(xcostheta)dx (d) 1/(tantheta)thetaint_(sintheta)^(sinthetatantheta)f(x)dx

(sintheta)/(1-cottheta)+(costheta)/(1-tantheta) is equal to (a) 0 (b) 1 (c) sintheta+costheta (d) sintheta-costheta

sintheta/(1-cottheta)+costheta/(1-tantheta)= (a) theta (b)1 (c) costheta-sintheta (d) costheta+sintheta

If x=(2sintheta)/(1+costheta+sintheta),t h e n(1-costheta+sintheta)/(1+sintheta) is equal to

The value of tan^(-1)((xcostheta)/(1-xsintheta))-cot^(-1)((costheta)/(x-sintheta))i s

If x=a(theta-sintheta),y=a(1-costheta) then (dy)/(dx)=

If int(sintheta-costheta)/((sintheta+costheta)sqrt(sinthetacostheta+sin^(2)thetacos^(2)theta))d theta = "cosec"^(_1)(f(theta))+C , then

If theta epsilon (0, pi/2) then the value of |((sintheta+cosectheta)^2, (sintheta- cosectheta)^2,1 ),((costheta+sectheta)^2, (costheta-sectheta)^2, 1),((tantheta+cottheta)^2, (tantheta-cottheta)^2, 1)|= (A) sintheta+costhetas+tantheta (B) 1 (C) 0 (D) 4

Find (dy)/(dx) when : x=a(1+costheta),y=a(theta+sintheta) .