Home
Class 12
MATHS
Let f(x) = [tan?x], (where [] denotes gr...

Let f(x) = [tan?x], (where [] denotes greatest integer function). Then -(B) f(x) is continuous at x = 0.(A) lim f(x) does not exist(C) f(x) is not differentiable at x = 0(D) f'(0) = 1nail futhara (denotes the greatest intege

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=[2x], where [.] denotes the greatest integer function,then

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

The function,f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

If f(x)=(x-[x])/(1-[x]+x), where [.] denotes the greatest integer function,then f(x)in: