Home
Class 10
MATHS
y(x)=x^(2)-3x+1,quad f(x)=x^(5)-4x^(3)+x...

y(x)=x^(2)-3x+1,quad f(x)=x^(5)-4x^(3)+x^(2)+3x+1

Promotional Banner

Similar Questions

Explore conceptually related problems

Check whether g(x)=x^(3)-3x+1 is a factor of f(x)=x^(5)-4x^(3)+x^(2)+3x+1 by applying the division algorithm.

If f (x) is defined [-2, 2] by f(x)=4x^(2)-3x+1 and g(x)=(f(-x)-f(x))/((x^(2)+3)) , then int_(-2)^(2)g(x)dx=

Identify polynomials in the following: f(x)=4x^(3)-x^(2)-3x+7g(x)=2x^(3)-3x^(2)+sqrt(x)-1p(x)=(2)/(3)x^(2)-(7)/(4)x+9q(x)=2x^(2)-3x+(4)/(x)+2h(x)=x^(4)-x^((2)/(3))+x-1f(x)=2+(3)/(x)+4x

Check whether g(x)=x^3-3x+1 is a factor of f(x)=x^5-4x^3+x^2+3x+1 by applying the division algorithm.

Find the intervals in which the following function are increasing or decreasing. f(x)=10-6x-2x^2 f(x)=x^2+2x-5 f(x)=6-9x-x^2 f(x)=2x^3-12 x^2+18 x+15 f(x)=5+36 x+3x^2-2x^3 f(x)=8+36 x+3x^2-2x^3 f(x)=5x^3-15 x^2-120 x+3 f(x)=x^3-6x^2-36 x+2 f(x)=2x^3-15 x^2+36 x+1 f(x)=2x^3+9x^2+20 f(x)=2x^3-9x^2+12 x-5 f(x)=6+12 x+3x^2-2x^3 f(x)=2x^3-24 x+107 f(x)=-2x^3-9x^2-12 x+1 f(x)=(x-1)(x-2)^2 f(x)=x^3-12 x^2+36 x+17 f(x)=2x^3-24+7 f(x)=3/(10)x^4-4/5x^3-3x^2+(36)/5x+11 f(x)=x^4-4x f(x)=(x^4)/4+2/3x^3-5/2x^2-6x+7 f(x)=x^4-4x^3+4x^2+15 f(x)=5x^(3/2)-3x^(5/2),x >0 f(x)==x^8+6x^2 f(x)==x^3-6x^2+9x+15 f(x)={x(x-2)}^2 f(x)=3x^4-4x^3-12 x^2+5 f(x)=3/2x^4-4x^3-45 x^2+51 f(x)=log(2+x)-(2x)/(2+x),xR

Check whether the following are quadratic equations : (1) (x-1)^(2)=2(x-3) (2) x^(2)-2x=(-2)(3-x) (3) (x-2)(x+1)=(x-1)(x+3) (4) (x-3)(2x+1)=x(x+5) (5) (2x-1)(x-3)=(x+5)(x-1) (6) x^(2)+3x+1=(x-2)^(2) (7) (x+2)^(3)=2x(x^(2)-1) (8) x^(3)-4x^(2)-x+1=(x-2)^(3)

Use the Factor Theorem to determine whether g (x) is factor of f(x) in each of the following cases: (i) f (x) = 5x ^(3) + x ^(2)-5x -1, g (x)=x +1 (ii) f (x) = x ^(3) + 3x ^(2) + 3x +1 , g(x) =x +1 (iii) f (x) =x ^(3) - 4x ^(2) +x + 6, g (x) =x -2 (iv) f (x) = 3x ^(3) + x^(2) - 20x + 12, g (x) = 3x -2 (v) f (x) = 4x ^(3) + 20 x ^(2) + 33 x +18, g (x) =2x +3

Find the horizontal, vertical and oblique asymptotes of each of the curves. {:((a),y=x/(x+4),,(b),y=(x^(2)+4)/(x^(2)-1)),((c),y=x^(3)/(x^(2)+3x-10),,(d),y=(x^(3)+1)/(x^(3)+x)),((e),y=x/(root(4)(x^(4)+1)),,(f),y=(x-9)/(sqrt(4x^(2)+3x+2))),((g),y=1/(2^(x)-1),,(h),y=1/(log_(e) x)),((i),y= 1/(2^(x) - 1),,,):}