Home
Class 11
PHYSICS
If vec(A) = 3 hati +2hatj and vec(B) = h...

If `vec(A) = 3 hati +2hatj` and `vec(B) = hati - 2hatj +3hatk`, find the magnitudes of `vec(A) +vec(B)` and `vec(A) - vec(B)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the magnitudes of the vectors \(\vec{A} + \vec{B}\) and \(\vec{A} - \vec{B}\). We start with the given vectors: \[ \vec{A} = 3 \hat{i} + 2 \hat{j} \] \[ \vec{B} = \hat{i} - 2 \hat{j} + 3 \hat{k} \] ### Step 1: Calculate \(\vec{A} + \vec{B}\) To find \(\vec{A} + \vec{B}\), we add the corresponding components of the vectors: \[ \vec{A} + \vec{B} = (3 \hat{i} + 2 \hat{j}) + (\hat{i} - 2 \hat{j} + 3 \hat{k}) \] Combining the components: \[ \vec{A} + \vec{B} = (3 + 1) \hat{i} + (2 - 2) \hat{j} + (0 + 3) \hat{k} = 4 \hat{i} + 0 \hat{j} + 3 \hat{k} \] Thus, \[ \vec{A} + \vec{B} = 4 \hat{i} + 3 \hat{k} \] ### Step 2: Calculate the magnitude of \(\vec{A} + \vec{B}\) The magnitude of a vector \(\vec{C} = x \hat{i} + y \hat{j} + z \hat{k}\) is given by: \[ |\vec{C}| = \sqrt{x^2 + y^2 + z^2} \] For \(\vec{A} + \vec{B} = 4 \hat{i} + 0 \hat{j} + 3 \hat{k}\): \[ |\vec{A} + \vec{B}| = \sqrt{4^2 + 0^2 + 3^2} = \sqrt{16 + 0 + 9} = \sqrt{25} = 5 \] ### Step 3: Calculate \(\vec{A} - \vec{B}\) Now, we find \(\vec{A} - \vec{B}\): \[ \vec{A} - \vec{B} = (3 \hat{i} + 2 \hat{j}) - (\hat{i} - 2 \hat{j} + 3 \hat{k}) \] Combining the components: \[ \vec{A} - \vec{B} = (3 - 1) \hat{i} + (2 + 2) \hat{j} + (0 - 3) \hat{k} = 2 \hat{i} + 4 \hat{j} - 3 \hat{k} \] Thus, \[ \vec{A} - \vec{B} = 2 \hat{i} + 4 \hat{j} - 3 \hat{k} \] ### Step 4: Calculate the magnitude of \(\vec{A} - \vec{B}\) Using the magnitude formula again: \[ |\vec{A} - \vec{B}| = \sqrt{2^2 + 4^2 + (-3)^2} = \sqrt{4 + 16 + 9} = \sqrt{29} \] ### Final Results The magnitudes are: 1. \(|\vec{A} + \vec{B}| = 5\) 2. \(|\vec{A} - \vec{B}| = \sqrt{29}\)
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If vec(A) = 2hati +3 hatj +hatk and vec(B) = 3hati + 2hatj + 4hatk , then find the value of (vec(A) +vec(B)) xx (vec(A) - vec(B))

If vec(A) = hati + 3hatj + 2hatk and vec(B) = 3hati + hatj + 2hatk , then find the vector product vec(A) xx vec(B) .

If vec(A) = 3hati +4hatj and vec(B) = 7 hat I +24 hatj , find a vector having the same magnitude as vec(B) and parallel to vec(A) .

Given : vec A = hati + hatj +hatk and vec B =-hati-hatj-hatk What is the angle between (vec A - vec B) and vec A ?

The sum and difference of two vectors vec(A) and vec(B) are vec(A) +vec(B) = 2hati +6 hatj + hatk and vec(A) - vec(B) = 4 hati +2 hatj - 11 hatk . Find the magnitude of each vector and their scalar product vec(A) vec(B) .

If vec(A)=2hati+hatj+hatk " and " vecB=10hati+5hatj+5hatk , if the magnitude of component of (vec(B)-vec(A)) along vec(A) is 4sqrt(x) . Then x will be .

If in parallelogram ABCD, diagonal vectors are vec(AC)=2hati+3hatj+4hatk and vec(BD)=-6hati+7hatj-2hatk , then find the adjacent side vectors vec(AB) and vec(AD) .

If vec A=hati +7hatj +hatk and vec B =2 hati+3hatj +4hatk then the component of vec A along vec B is

If vec(a) = hati - 2hatj - 3hatk, vec(b) = 2 hati - hatj - hatk and vec(c) = hati +3 hatj - 2hatk find (vec(a) xx vec(b)) xx vec(c)

If vec(A) and vec(B) are two such vectors that |vec(A)| = 2, |vec(B)| = 7 and vec(A) xx vec(B) = 3 hati +2 hatj + 6 hatk , find the angle between vec(A) and vec(B) .