The density of nickel (face centered cubic cell) is `8.94g//cm^(3) at 20^(@)C`. What is the radius of the atom? `("Atomic mass": Ni=59)`
A
0.124nm
B
0.136nm
C
0.149nm
D
0.110nm
Text Solution
AI Generated Solution
The correct Answer is:
To find the radius of a nickel atom in a face-centered cubic (FCC) structure given the density and atomic mass, we can follow these steps:
### Step 1: Understand the formula for density in a cubic cell
The density (\(d\)) of a crystal structure can be calculated using the formula:
\[
d = \frac{Z \times M}{N_A \times a^3}
\]
Where:
- \(Z\) = number of atoms per unit cell (for FCC, \(Z = 4\))
- \(M\) = molar mass of the substance (for Ni, \(M = 59 \, g/mol\))
- \(N_A\) = Avogadro's number (\(6.022 \times 10^{23} \, mol^{-1}\))
- \(a\) = edge length of the cubic cell
### Step 2: Rearrange the formula to find \(a^3\)
Rearranging the formula to solve for \(a^3\):
\[
a^3 = \frac{Z \times M}{d \times N_A}
\]
### Step 3: Substitute the known values
Substituting the known values into the equation:
- \(Z = 4\)
- \(M = 59 \, g/mol\)
- \(d = 8.94 \, g/cm^3\)
- \(N_A = 6.022 \times 10^{23} \, mol^{-1}\)
\[
a^3 = \frac{4 \times 59}{8.94 \times 6.022 \times 10^{23}}
\]
### Step 4: Calculate \(a^3\)
Calculating the numerator:
\[
4 \times 59 = 236
\]
Calculating the denominator:
\[
8.94 \times 6.022 \times 10^{23} \approx 5.375 \times 10^{24}
\]
Now substituting these values:
\[
a^3 = \frac{236}{5.375 \times 10^{24}} \approx 4.38484 \times 10^{-23} \, cm^3
\]
### Step 5: Calculate \(a\)
Now, take the cube root of \(a^3\) to find \(a\):
\[
a = (4.38484 \times 10^{-23})^{1/3} \approx 3.53 \times 10^{-8} \, cm
\]
### Step 6: Relate edge length \(a\) to atomic radius \(r\)
In a face-centered cubic structure, the relationship between the edge length \(a\) and the atomic radius \(r\) is given by:
\[
a = 2\sqrt{2}r
\]
Thus, we can solve for \(r\):
\[
r = \frac{a}{2\sqrt{2}} = \frac{3.53 \times 10^{-8}}{2\sqrt{2}} \approx 1.25 \times 10^{-8} \, cm
\]
### Step 7: Convert \(r\) to nanometers
To convert \(r\) to nanometers:
\[
1 \, cm = 10^{7} \, nm \implies r \approx 0.125 \, nm
\]
### Final Answer
The radius of the nickel atom is approximately \(0.125 \, nm\).
---
Topper's Solved these Questions
SOLID STATE
NARENDRA AWASTHI|Exercise Level 1 (Q.33 To Q.62)|1 Videos
SOLID STATE
NARENDRA AWASTHI|Exercise Level 3 - One Or More Answers Are Correct|1 Videos
The density of krypton (face centered cubic cell) is 3.19g//cm^(3) . What is the radius of the atom? ("Atomic mass": Kr=84)
The density of argon (face centered cubic cell) is 1.83g//cm^(3) at 20^(@)C . What is the length of an edge a unit cell? ("Atomic mass": Ar=40)
The density of copper is 8.95 g cm^(-3) .It has a face centred cubic structure .What is the radius of copper atom? Atomic mass Cu =63.5 gmol^(-1)N_(A)=6.02xx10^(23) mol^(-1)
An element (with atomic mass=250 g) crystallises in a simple cube. If the density of unit cell is 7.2 g cm^(-3) , what is the radius of the element ?
The volume of atom present in a face-centred cubic unit cell of a metal ( r is atomic radius ) is