Home
Class 11
CHEMISTRY
The density of nickel (face centered cub...

The density of nickel (face centered cubic cell) is `8.94g//cm^(3) at 20^(@)C`. What is the radius of the atom? `("Atomic mass": Ni=59)`

A

0.124nm

B

0.136nm

C

0.149nm

D

0.110nm

Text Solution

AI Generated Solution

The correct Answer is:
To find the radius of a nickel atom in a face-centered cubic (FCC) structure given the density and atomic mass, we can follow these steps: ### Step 1: Understand the formula for density in a cubic cell The density (\(d\)) of a crystal structure can be calculated using the formula: \[ d = \frac{Z \times M}{N_A \times a^3} \] Where: - \(Z\) = number of atoms per unit cell (for FCC, \(Z = 4\)) - \(M\) = molar mass of the substance (for Ni, \(M = 59 \, g/mol\)) - \(N_A\) = Avogadro's number (\(6.022 \times 10^{23} \, mol^{-1}\)) - \(a\) = edge length of the cubic cell ### Step 2: Rearrange the formula to find \(a^3\) Rearranging the formula to solve for \(a^3\): \[ a^3 = \frac{Z \times M}{d \times N_A} \] ### Step 3: Substitute the known values Substituting the known values into the equation: - \(Z = 4\) - \(M = 59 \, g/mol\) - \(d = 8.94 \, g/cm^3\) - \(N_A = 6.022 \times 10^{23} \, mol^{-1}\) \[ a^3 = \frac{4 \times 59}{8.94 \times 6.022 \times 10^{23}} \] ### Step 4: Calculate \(a^3\) Calculating the numerator: \[ 4 \times 59 = 236 \] Calculating the denominator: \[ 8.94 \times 6.022 \times 10^{23} \approx 5.375 \times 10^{24} \] Now substituting these values: \[ a^3 = \frac{236}{5.375 \times 10^{24}} \approx 4.38484 \times 10^{-23} \, cm^3 \] ### Step 5: Calculate \(a\) Now, take the cube root of \(a^3\) to find \(a\): \[ a = (4.38484 \times 10^{-23})^{1/3} \approx 3.53 \times 10^{-8} \, cm \] ### Step 6: Relate edge length \(a\) to atomic radius \(r\) In a face-centered cubic structure, the relationship between the edge length \(a\) and the atomic radius \(r\) is given by: \[ a = 2\sqrt{2}r \] Thus, we can solve for \(r\): \[ r = \frac{a}{2\sqrt{2}} = \frac{3.53 \times 10^{-8}}{2\sqrt{2}} \approx 1.25 \times 10^{-8} \, cm \] ### Step 7: Convert \(r\) to nanometers To convert \(r\) to nanometers: \[ 1 \, cm = 10^{7} \, nm \implies r \approx 0.125 \, nm \] ### Final Answer The radius of the nickel atom is approximately \(0.125 \, nm\). ---
Promotional Banner

Topper's Solved these Questions

  • SOLID STATE

    NARENDRA AWASTHI|Exercise Level 1 (Q.33 To Q.62)|1 Videos
  • SOLID STATE

    NARENDRA AWASTHI|Exercise Level 3 - One Or More Answers Are Correct|1 Videos
  • IONIC EEQUILIBRIUM

    NARENDRA AWASTHI|Exercise Exercise|196 Videos
  • STOICHIOMETRY

    NARENDRA AWASTHI|Exercise Level 3 - Subjective Problems|20 Videos

Similar Questions

Explore conceptually related problems

The density of krypton (face centered cubic cell) is 3.19g//cm^(3) . What is the radius of the atom? ("Atomic mass": Kr=84)

The density of argon (face centered cubic cell) is 1.83g//cm^(3) at 20^(@)C . What is the length of an edge a unit cell? ("Atomic mass": Ar=40)

The density of copper is 8.95 g cm^(-3) .It has a face centred cubic structure .What is the radius of copper atom? Atomic mass Cu =63.5 gmol^(-1)N_(A)=6.02xx10^(23) mol^(-1)

An element (with atomic mass=250 g) crystallises in a simple cube. If the density of unit cell is 7.2 g cm^(-3) , what is the radius of the element ?

The volume of atom present in a face-centred cubic unit cell of a metal ( r is atomic radius ) is