Home
Class 12
MATHS
" i) Find "f^(-1)(x)" if "f(x)=(e^(x)-e^...

" i) Find "f^(-1)(x)" if "f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={(e^(x+1)-e^(x),x =1)

f(x)=(e^(2x)-1)/(e^(2x)+1) is

The inverse of the function f:R to {x in R: x lt 1}"given by "f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x)), is

Let f:R rarr R" be defined by "f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)). Then

f: R to R is a function defined by f(x) =(e^(|x|) -e^(-x))/(e^(x) + e^(-x)) . Then f is:

The inverse of the function f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))-1 is

f(x)=((e^(2x)-1)/(e^(2x)+1)) is

Find the inverse of the following function: f(x) = (e^(x) -e^(-x))/(e^(x)+e^(-x))+2

The function f:R rarr R defined by f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)) is