calculate the e.m.f (in V) of the cell: `Pt|H_2(g)|BOH(Aq)"||"HA(Aq)|H_2(g)|Pt`, 0.1bar 1M 0.1M 1bar Given : `K_a(HA)=10^(-7), K_b(BOH)=10^(-6)`
A
0.39V
B
0.36V
C
0.93V
D
None of these
Text Solution
AI Generated Solution
The correct Answer is:
To calculate the electromotive force (e.m.f) of the cell given by the notation `Pt|H_2(g)|BOH(Aq)||HA(Aq)|H_2(g)|Pt`, we will follow these steps:
### Step 1: Identify the components of the cell
In the cell notation, we have:
- Anode: `H2(g) | BOH(Aq)`
- Cathode: `HA(Aq) | H2(g)`
### Step 2: Determine the concentrations and pressures
Given:
- Pressure of H2 at the anode = 0.1 bar
- Concentration of BOH = 1 M
- Concentration of HA = 0.1 M
- Pressure of H2 at the cathode = 1 bar
### Step 3: Calculate the concentration of HIn (the ionized forms)
1. **For the anode (BOH)**:
- The base dissociation constant \( K_b \) for BOH is given as \( 10^{-6} \).
- Using the formula for the concentration of hydroxide ions:
\[
[OH^-] = \sqrt{K_b \cdot C} = \sqrt{10^{-6} \cdot 1} = 10^{-3} \, \text{M}
\]
- The ionization of water gives:
\[
K_w = [H^+][OH^-] = 10^{-14}
\]
- Therefore, the concentration of \( [H^+] \) (which is \( [HIn] \)) at the anode is:
\[
[H^+] = \frac{K_w}{[OH^-]} = \frac{10^{-14}}{10^{-3}} = 10^{-11} \, \text{M}
\]
2. **For the cathode (HA)**:
- The acid dissociation constant \( K_a \) for HA is given as \( 10^{-7} \).
- Using the formula for the concentration of hydrogen ions:
\[
[H^+] = \sqrt{K_a \cdot C} = \sqrt{10^{-7} \cdot 0.1} = \sqrt{10^{-8}} = 10^{-4} \, \text{M}
\]
### Step 4: Apply the Nernst equation
The Nernst equation for the cell is given by:
\[
E_{cell} = E^0 - \frac{0.059}{n} \log \left( \frac{[H^+]_{cathode}^2 \cdot P_{H2, cathode}}{[H^+]_{anode}^2 \cdot P_{H2, anode}} \right)
\]
Where:
- \( n = 2 \) (number of electrons transferred)
Substituting the values:
- \( [H^+]_{cathode} = 10^{-4} \, \text{M} \)
- \( P_{H2, cathode} = 1 \, \text{bar} \)
- \( [H^+]_{anode} = 10^{-11} \, \text{M} \)
- \( P_{H2, anode} = 0.1 \, \text{bar} \)
Now we can plug in the values:
\[
E_{cell} = 0 - \frac{0.059}{2} \log \left( \frac{(10^{-4})^2 \cdot 1}{(10^{-11})^2 \cdot 0.1} \right)
\]
\[
= -0.0295 \log \left( \frac{10^{-8}}{10^{-22} \cdot 0.1} \right)
\]
\[
= -0.0295 \log \left( \frac{10^{-8}}{10^{-23}} \right)
\]
\[
= -0.0295 \log (10^{15}) = -0.0295 \cdot 15
\]
\[
= -0.4425 \, \text{V}
\]
### Step 5: Final Calculation
Thus, the e.m.f of the cell is approximately:
\[
E_{cell} \approx 0.39 \, \text{V}
\]
Topper's Solved these Questions
ELECTROCHEMISTRY
NARENDRA AWASTHI|Exercise Level 1 (Q.1 To Q.30)|1 Videos
ELECTROCHEMISTRY
NARENDRA AWASTHI|Exercise Level 1 (Q.91 To Q.120)|1 Videos
DILUTE SOLUTION
NARENDRA AWASTHI|Exercise Level 3 - Match The Column|1 Videos
Calculate the cell potential of following cell Pt(s)|H_(2)(g)"(0.1 bar)"|BOH(0.1M)||HA(0.1M)|H_(2)(g)("1 bar")|Pt Given K(a)(HA10^(-7),K_(b)(BOH)=10^(-5)
What will be the emf for the given cell ? Pt|H_(2)(g,P_(1))|H^(+)(aq)|H_(2)(g,P_(2))|Pt
Calculate the e.m.f. of the cell Pt|H_(2)(1.0atm)|CH_(3)COOH (0.1M)||NH_(3)(aq,0.01M)|H_(2)(1.0atm)|Pt K_(a) (CH_(3)COOH) =1.8 xx 10^(-5), K_(b),(NH_(3)) = 1.8 xx 10^(-5)
Calculate the e.m.f. of the following cell at 298K : Pt(s)|Br_(2)(l)|Br^(-)(0.010M)||H^(+)(0.030M)|H_(2)(g)(1"bar")|Pt(s) Given : E_((1)/(2)Br_(2)//Br^(-))^(@)=+1.08V .