Home
Class 12
MATHS
The function phi(x) = [|x|-sin|x|] (whe...

The function `phi(x) = [|x|-sin|x|]` (where [.] denotes greater integer function) is -

Promotional Banner

Similar Questions

Explore conceptually related problems

The function, f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

The domain of the function f(x) =[x]sin pi/[x+1] , where [] denote greatest integer function is:

If the function f(x)=[3.5 + b sin x] (where[.] denotes the greatest integer function) is an even function then complete set of values of 'b' is :

The function f(x) = {x} sin (pi [x]) , where [.] denotes the greatest integer function and {.} is the fraction part function , is discontinuous at

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

The function,f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

If the function f(x)=[4.8+a sin x] (where [.1-* denotes the greatest integer function is an evenfunction then a belongs to

Find the Range of function f(x) = [|sin x| + |cosx |] , where [.] denotes are greatest integer function , is :

If the function f(x)=[2.6+b sin x] where [.] denotes greatest integer function,is an even function then complete set of values of b is: