Home
Class 12
MATHS
" If "(3^(2x-8))/(225)=(5^(3))/(5^(x)),"...

" If "(3^(2x-8))/(225)=(5^(3))/(5^(x))," then "x=

Promotional Banner

Similar Questions

Explore conceptually related problems

If (3^(2x-6))/(225) = (5^(2))/(5^(x)) . Then the value of 'x' will be

(2x)/(5-3x)=(5+3x)/(8x)

Find the value of x in each of the following . (i) root5(5x + 2) = 2 (ii) root3(3x - 2) =4 (iii) ((3)/(4))^(3)((4)/(3))^(-7)= ((3)/(4))^(2x) (iv) 5^(x-3) xx 3^(2x -8) = 225 (v) (3^(3x) . 3^(2x))/(3^(x)) = root4(3^(20))

If 8(2x-5)-6(3x-7)=10 , then x=?

If |(2x,-3),(5,x)| =|(4,3),(5,8)| , then positive value of x is

x=(2*5)/((2!)3)+(2*5*7)/((3!)3^(2))+(2*5*7*9)/((4!)3^(3))+..... then x^(2)+8x+8=

int( (5x+8))/(x^(2)(3x+8))dx

If 8(2x-5)-6(3x-7)=1 then x= ?