Home
Class 12
MATHS
int 1/((1+x^2) tan^(-1)x) dx...

`int 1/((1+x^2) tan^(-1)x) dx`

Text Solution

Verified by Experts

`tan^(-1)x=t`
`1/(1+x^2)dx=dt`
`=int1/t dt`
`=lnt+C`
`=ln(tan^(-1)x)+C`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following integrals. int(1)/(1+x^(2))e^(tan^(-1)x)dx

int (e^(x) (x^(2) tan^(-1) x + tan^(-1) x + 1))/( x^(2) + 1) dx is

int_(-1)^(1) tan^(-1) x dx =

int(1)/((1+x^(2))sqrt(tan^(-1)x))dx=?

If int_(0)^(1) tan^(-1) x dx = p , then the value of int_(0)^(1) tan^(-1)((1-x)/(1 +x)) dx is

If int_(0)^(1) tan^(-1) x dx = p , then the value of int_(0)^(1) tan^(-1)((1-x)/(1 +x)) dx is

(i) int(tan^(-1))/((1+x^(2)))dx" "(ii) int(1)/(sqrt(1-x^(2)) sin^(-1)x)dx

(i) int(tan^(-1))/((1+x^(2)))dx" "(ii) int(1)/(sqrt(1-x^(2)) sin^(-1)x)dx

Statement I int((1)/(1+x^(4)))dx=tan^(-1)(x^(2))+C Statement II int(1)/(1+x^(2))dx=tan^(-1)x +C