Home
Class 12
MATHS
Statement 1: If lim(xto0){f(x)+(sinx)/x}...

Statement 1: If `lim_(xto0){f(x)+(sinx)/x}` does not exist then `lim_(xto0)f(x)` does not exist.
Statement 2: `lim_(xto0)((e^(1//x)-1)/(e^(1//x)+1))` does not exist.

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that lim_(xto0^(-)) ((e^(1//x)-1)/(e^(1//x)+1)) does not exist.

Show that lim_(xto0) (e^(1//x)-1)/(e^(1//x)+1) does not exist.

lim_(xto0)((e^(x)-1)/x)^(1//x)

lim_(xto0)((e^(x)-1)/x)^(1//x)

Statement - I: if lim_(x to 0)((sinx)/(x)+f(x)) does not exist, then lim_(x to 0)f(x) does not exist. Statement - II: lim_( x to 0)(sinx)/(x)=1

Show that underset(xto0)lim(e^(1//x)-1)/(e^(1//x)+1) does not exist.

Show that underset(xto0)lim(e^(1//x)-1)/(e^(1//x)+1) does not exist.

lim_(xto0)(e^(sinx)-1)/x=

Show that ("lim")_(xto0) (e^ (1/x)+1 / e^ (1/x)-1) does not exist

Slove lim_(xto0)((1+x)^(1//x)-e)/x