Home
Class 11
MATHS
Let Pm stand for mPm. Then the expressio...

Let `P_m` stand for `mP_m`. Then the expression `1.P_1 + 2.P_2 +3.P_3 +...+n.P_n` =:

Promotional Banner

Similar Questions

Explore conceptually related problems

If P_(m) stands for mP_(m), then prove that: 1+1.P_(1)+2.P_(2)+3.P_(3)+...+n.P_(n)=(n+1)!

If P stands for P_(r) then the sum of the series 1 + P_(1) + 2P_(2) + 3P_(3) + …+ nPn is

If P_m stands for ^m P_m , then prove that: 1+1. P_1+2. P_2+3. P_3++ndotP_n=(n+1)!

Let P_(m) stand for mP_(m) then 1+P_(1)+2P_(2)+3P_(3)+.......+nP_(n) is equal to

If P_m stands for ""^mP_m , then : 1+1.P_1+2P_2+3P_3+.........+nP_n is equal to ,