Home
Class 13
MATHS
[I(1)e^(y)=y^(x)" then "],[" Show that "...

[I_(1)e^(y)=y^(x)" then "],[" Show that "(dy)/(dx)=((log y)^(2))/(log y-1)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(y)=y^(x), prove that (dy)/(dx)=((log y)^(2))/(log y-1)

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)

If y^(x)= e^(y-x) , then prove that (dy)/(dx)= ((1+ log y)^(2))/(log y)

If y^(x)=e^(y-x) , then prove that (dy)/(dx)=((1+log y)^(2))/(logy) .

If x^(y)=e^(x-y), then show that (dy)/(dx)=(log x)/((1+log x)^(2))

If y^(x) = e^(y -x) , prove that (dy)/(dx) = ((1 + log y)^2)/(log y) .

If x^(y) y^(x)=5 , then show that (dy)/(dx)= -(log y + (y)/(x))/(log x + (x)/(y))

If y = e^(ax) Show that x(dy)/(dx) = y log y .