Home
Class 12
MATHS
sin^-1 x +cos^-1 x=pi/2,|x| leq 1...

`sin^-1 x +cos^-1 x=pi/2,|x| leq 1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x = (pi)/(2), |x| le 1

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

If sin^-1 x + sin^-1y = pi/2 , then value of cos^-1 x + cos^-1 y

Prove that the identities, sin^-1 cos(sin^-1x)+cos^-1 sin(cos^-1x)=pi/2 , |x|<=1

If sin^(-1) x + sin^(-1) y=pi/2 , then the value of cos^(-1) x +cos^(-1) y is :

Show that sin^-1 x+cos^-1 x=pi/2 .

If |sin^(-1)x|+|cos^(-1)x|=pi/2,t hen

The number of real solutions (x, y) , where |y| = sin x, y = cos^-1 (cosx),-2pi leq x leq 2pi is

If |sin^(-1)x|+|cos^(-1)x| = pi/2, then x in