Home
Class 12
MATHS
" If "y=sec^(-1)((x^(2)+1)/(x^(2)-1))" t...

" If "y=sec^(-1)((x^(2)+1)/(x^(2)-1))" then "(dy)/(dx)=?

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sec^(-1)((x^(2)+1)/(x^(2)-1)) , then find (dy)/(dx) . Here f^(-1)(x) expression is of the form (x^(2)+a^(2))/(x^(2)-a^(2)) , so we substitute x=tan theta and then use suitable trigonometrical formula to write it in simplest form and then differentiate

If y = sec^(-1) ((1)/(2x^(2) -1)) " then " (dy)/(dx) = ?

y = sec^(-1)((1+x^(2))/(1-x^(2))), find dy/dx.

If y= sin^(-1)((2x)/(x^(2)+1)) +sec^(-1)((1+x^(2))/(1-x^(2))) , prove that (dy)/(dx)=(4)/(1+x^(2)) .

If y=tan^(-1)((2y)/(1-x^(2)))+sec^(-1)((1+x^(2))/(1-x^(2)))x>0, prove that (dy)/(dx)=(4)/(1+x^(2))

If y=sec^(-1)((1)/(2x^2-1)) find (dy)/(dx) .

Find (dy)/(dx) in the following: y= sec^(-1) ((x^(2) + 1)/(x^(2)-1))

If sec^(-1) ((1 + x)/(1-y)) = a , " then " (dy)/(dx) is