Home
Class 12
MATHS
^nC0-1/2(^nC1)+1/3(^nC2)-.....+(-1)^n(^n...

`^nC_0-1/2(^nC_1)+1/3(^nC_2)-.....+(-1)^n(^nC_n)/(n+1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If ^nC_0/2- ^nC_1/3+^nC_2/4-…….+(-1)^n ^nC_n/(n+2)= 1/(1999x2000) then n= (A) 1998 (B) 1999 (C) 2000 (D) 2001

Prove that ""^nC_0-2*""^nC_1+3*""^nC_2-...+(-1)""^n(n+1)""^nC_n=0

Prove that 2*""^nC_0+2^2*(""^nC_1)/2+2^3*(""^nC_2)/3+...2^(n+1)*(""^nC_n)/(n+1)=(3^(n+1)-1)/(n+1)

Prove that (""^nC_1)/(""^nC_0)+2*(""^nC_2)/(""^nC_1)+3*(""^nC_3)/(""^nC_2)+...+n*(""^nC_n)/(""^nC_(n-1))=frac{n(n+1)}{2}

If (nC_0)/(2^n)+2.(nC_1)/2^n+3.(nC_2)/2^n+....(n+1)(nC_n)/2^n=16 then the value of 'n' is

If (nC_0)/(2^n)+2.(nC_1)/2^n+3.(nC_2)/2^n+....(n+1)(nC_n)/2^n=16 then the value of 'n' is

The value of ("^n C_0)/n + ("^nC_1)/(n+1) + ("^nC_2)/(n+2) +....+ ("^nC_ n)/(2n) is equal to

The value of ("^n C_0)/n + ("^nC_1)/(n+1) + ("^nC_2)/(n+2) +....+ ("^nC_ n)/(2n) is equal to a. int_0^1x^(n-1)(1-x)^n dx b. int_1^2x^n(x-1)^(n-1)dx c. int_1^2x^(n-1)(1+x)^n dx d. int_0^1(1-x)^(n-1)dx

Prove that ""^nC_0+2*""^nC_1+3*""^nC_2+...+(n+1)""^nC_n=(n+2)2^(n-1)

If (1 + x)^n= ""^nC_0+""^nC_1x+""^nC_2x^2+.............+ ""^nC_n x^n , prove that : ""^nC_1-2""^nC_2+3""^nC_3-.......+(-1)^(n-1) n ""^nC_n=0 .