Home
Class 11
MATHS
[" Question No ".40],[" Let "f(2)=4" and...

[" Question No ".40],[" Let "f(2)=4" and "f^(1)(2)=4" then "Lt(zf(2)-2f(z))/(z rarr2)=],[[" (A) "2," (B) "-2],[" (C) "-4," (D) "3]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(2)=4 and f'(2)=4 then Lt_(x to 2) (xf(2)-2f(x))/(x-2)=

Let f(2)=4,f'(2)=4 .Then Lt_(x rarr2)(xf(2)-2f(x))/(x-2) is :

Let f(2)=4 and f'(2)=4. Then lim_(x rarr2)(xf(2)-2f(x))/(x-2) is equal to

If f(2)=4 and f'(2)=1, then find (lim)_(x rarr2)(xf(2)-2f(x))/(x-2)

if f(2)=4,f'(2)=1 then lim_(x rarr2)(xf(2)-2f(x))/(x-2)

if f(2)=4,f'(2)=1 then lim_(x rarr2)(xf(2)-2f(x))/(x-2)

Let : y=f(x)-f(2x)" and "z=f(x)-f(4x). If : y'(1)=5" and "y'(2)=7," then: "z'(1)=

Let f:""(-1,""1) rarr R be a differentiable function with f(0)""=""-1" "a n d" "f'(0)""=""1 . Let g(x)""=""[f(2f(x)""+""2)]^2 . Then g'(0)""= (1) -4 (2) 0 (3) 2 (4) 4

If f(2)=2,f'(2)=1. then lim_(x rarr2)(2x^(2)-4f(x))/(x-2)=(i)-4(ii)-2(iii)2(iv)