Home
Class 9
MATHS
AA x(x)=x^(3)-2x^(2)-8x-1,g(x)=x+1...

AA x(x)=x^(3)-2x^(2)-8x-1,g(x)=x+1

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the remainder theorem , find the remainder , when p (x) is divided by g (x) , where p(x)=x^(3)-2x^(2)-8x-1,g(x)=x+1 .

Find the quotient and remainder on dividing p(x) by g(x) p(x)= 4x^(3)+8x^(2)+8x+7, g(x)= 2x^(2)-x+1

Using factor theorem , show that g (x) is a factor of p(x) , when p(x)=2x^(4)+x^(3)-8x^(2)-x+6,g(x)=2x-3

If p(x)=8x^(3)-6x^(2)-4x+3 and g(x) = (x)/(3)-(1)/(4) then check whether g (x) is a factor of p(x) or not.

Find gof and fog wehn f:R rarr R and g:R rarr R are defined by f(x)=2x+3 and g(x)=x^(2)+5f(x)=2x+x^(2) and g(x)=x^(3)f(x)=x^(2)+8 and g(x)=3x^(3)+1f(x)=8x^(3) and g(x)=x^(1/3)+1f(x)=8x^(3) and

Let f (x) = (x ^(3) -4)/((x-1)^(3)) AA x ne 1, g (x)== (x ^(4) -2x ^(2))/(4) AA x in R, h (x) (x ^(3) +4)/((x+1)^(3)) AA x ne -1,

Check whether g(x) is a factor of p(x) by dividing the first polynomial by the second polynomial: (i) p(x) = 4x^(3) + 8x + 8x^(2) +7, g(x) =2x^(2) -x+1 , (ii) p(x) =x^(4) - 5x -2, g(x) =2-x^(2) , (iii) p(x) = 13x^(3) -19x^(2) + 12x +14, g(x) =2-2x +x^(2)

" If (3x^(3)-8x^(2)+10)/((x-1)^(4))=(3)/(x-1)+(1)/((x-1)^(2))-(7)/((x-1)^(3))+(k)/((x-1)^(2)) then "k=