Home
Class 12
MATHS
Consider the graph of y=f(|x|) Then the ...

Consider the graph of `y=f(|x|)` Then the value of definite integral `int_1^2((f(x))^2019)/(1+(f(x))^2018+(f(x))^2020)dx` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the definite integral int_(-2008)^(2008)((f'(x)+f'(-x))/((2008)^(x)+1))dx

The value of the integral int_(-2018)^(2018)(f'(x)+f'(-x))/(2018^(x)+1)dx is equal to

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

The value of the integral int f_(0)^(2)|x^(2)-1|dx is

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

If f(0)=1,f(2)=3,f'(2)=5 ,then the value of the definite integral int_(0)^(1)xf''(2x)dx is

Let f(x)=cos(log x). Then the value of the integral int_(-2010)^(2010)(f(x)*f(f(x))-(1)/(2){f((x)/(f(x))+f(xf(x))}dx

Prove that the value of the integral, int_(0)^(2a)(f(x))/(f(x)+f(2a-x))dx is equal to a.