Home
Class 12
MATHS
C0/1+C1/2+C2/3+...............Cn/(n+1)=...

`C_0/1+C_1/2+C_2/3+...............C_n/(n+1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove that : C_0+ C_1/2 +C_2/3+.........+C_n/(n+1)= (2^(n+1)-1)/(n+1) .

C_1/C_0+2C_2/C_1+3C_3/C_2+............+nC_n/C_(n-1)=(n(n+1))/2

C_1/C_0+2C_2/C_1+3C_3/C_2+............+nC_n/C_(n-1)=(n(n+1))/2

Prove that : C_0 + C_1/2 + C_2/3 + ….. + C_n/(n+1) = (2^(n+1) - 1)/(n+1)

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove the following : C_0-C_1/2+C_2/3-.....+(-1)^n C_n/(n+1)= 1/(n+1) .

Show that: C_1/C_0 + 2 C_2/C_1 + 3 C_3/C_2 + .... + n C_n/(C_n -1) = (n(n+1))/2

Prove that C_0+(C_1)/(2)+(C_2)/(3)+....+(C_n)/(n+1)=(2^(n+1)-1)/(n+1)

If (1+x)^n=C_0+C_1x+C_2x^2+……..+C_nx^n in N prove that (a) 3 C_0- 8C_1+13C_2-18C_3+...."upto" (n+1) term=0 if n ge 2 (b ) 2C_0+2^2(C_1)/(2)+2^3(C_2)/(3)+2^4C_(3)/4+....+2^(n+1)(C_n)/(n+1)=(3^n+1-1)/(n+1) ( c) C_0^2+(C_1^2)/2+C_2^2/3+....+C_n^2/(n+1)=((2n+1)!)/(((n+1)!)^2)

C0-(C1)/(2)+(C2)/(3)-............+(-1)^(n)(Cn)/(n+1)=(1)/(n+1)

Prove that C_1/C_0+(2c_(2))/C_1+(3C_3)/(C_2)+......+(n.C_n)/(C_(n-1))=(n(n+1))/2