Home
Class 12
MATHS
int1/(1+cos^2x)dx=1/(sqrt(2))tan^(-1)((t...

`int1/(1+cos^2x)dx=1/(sqrt(2))tan^(-1)((tanx)/(sqrt(2)))+c`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/(7+5cos x)dx=(1)/(sqrt(6))tan^(-1)((1)/(sqrt(6))(tan x)/(2))+C(b)(1)/(sqrt(3))tan^(-1)((1)/(sqrt(3))(tan x)/(2))+C(c)(1)/(4)tan^(-1)((tan x)/(2))+C(d)(1)/(7)tan^(-1)((tan x)/(2))+C

int1/(7+5cosx)\ dx= 1/(sqrt(6))tan^(-1)(1/(sqrt(6))tanx/2)+C (b) 1/(sqrt(3))tan^(-1)(1/(sqrt(3))tanx/2)+C (c) 1/4tan^(-1)(tanx/2)+C (d) 1/7tan^(-1)(tanx/2)+C

int(dx)/(sin^(2)x+Tan^(2)x)=(-1)/(l)cot x-(1)/(k sqrt(2))Tan^(-1)((tan x)/(sqrt(2)))+c then (k)^l=

int(dx)/(sin^(2)x+tan^(2)x)=(-1)/(l)cot x-(1)/(k sqrt(2))Tan^(-1)((tan x)/(sqrt(2)))+c then (k)^l=

A: int (1)/(3+2 cos x)dx=(2)/(sqrt(5))"Tan"^(-1)((1)/(sqrt(5))"tan" (x)/(2))+c R: If a gt b then int (dx)/(a+b cosx)=(2)/(sqrt(a^(2)-b^(2)))Tan^(-1)[(sqrt(a-b))/(a+b)"tan"(x)/(2)]+c

" If "int(1)/(x^(4)+1)dx=(1)/(2sqrt(2))tan^(-1)((x^(2)-1)/(sqrt(2)x))+A+c" .Then "A" is equal to "

" If "int(1)/(x^(4)+1)dx=(1)/(2sqrt(2))tan^(-1)((x^(2)-1)/(sqrt(2)x))+A+c" .Then "A" is equal to "

Assertion (A) : int(dx)/(x^(2) + 2x + 3) = (1)/(sqrt(2)) tan^(-1)((x+1)/(sqrt(2))) + c Reason (R) : int(dx)/(x^(2) + a^(2)) = (1)/(a) tan^(-1)((x)/(a)) + c

int(dx)/(4sin^(2)x+3cos^(2)x) is equal to a) (sqrt(3))/(4)tan^(-1)""((2tanx)/(sqrt(3)))+C b) (1)/(2sqrt(3))tan^(-1)""((tanx)/(sqrt(3)))+C c) (2)/(sqrt(3))tan^(-1)""((2tanx)/(sqrt(3)))+C d) (1)/(2sqrt(3))tan^(-1)""((2tanx)/(sqrt(3)))+C

int(sinx)/(3+4cos^2x)\ dx a. log(3+4cos^2x)+C (b) 1/(2sqrt(3))tan^(-1)((cosx)/(sqrt(3)))+C (c) -1/(2sqrt(3))tan^(-1)((2"\ cos"x)/(sqrt(3)))+C (d) 1/(2sqrt(3))tan^(-1)((2"\ cos"x)/(sqrt(3)))+C