Home
Class 12
MATHS
Lt(x->oo)(1/e-x/(1+x))^x=...

`Lt_(x->oo)(1/e-x/(1+x))^x=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Lt_(x to oo)(1-(7)/(x))^(3x)=

lim_(x->oo)(1-x+x.e^(1/n))^n

Lt_(x to oo) (1+e^(-x))^(e^(x)) =

Lt_(x to oo)(1+(3)/(x))^(x//2)=

Lt_(x to 0)+((1)/(x))^(tanx) (oo^(theta) "from")

2. Lt_(x rarr oo)(x)/(1+x)

Using definition, Show that Lt_(x to oo)(1)/(x^(2))=0

Lt_(x to oo)((2^((1)/(x))+27^((1)/(x))+8^((1)/(x)))/(3))^(x)=

Lt_(x to oo)(x^(n))/(e^(x))=0 for

For x>0,Ltx^((1)/(x))+Lt_(x rarr oo)x^((1)/(x))=