Home
Class 12
MATHS
If sectheta+ tantheta = 1, then root of...

If `sectheta+ tantheta = 1`, then root of the equation `(a-2b + c)x^2 +(b-2c+ a)x+(c-2a+b) = 0` is:

Promotional Banner

Similar Questions

Explore conceptually related problems

If sec theta + tan theta=1 , then root of the equation (a-2b+c)x^(2) + (b-2c+a)x + (c-2a+b)=0 is:

If sec theta+tan theta=1, then root of the equation (a-2b+c)x^(2)+(b-2c+a)x+(c-2a+b)=0 is :

The roots of the equation ( a-b) x^2 +(b-c) x+ (c-a) =0 are

If sectheta+tantheta=1 then one root of equation a(b-c)x^2+b(c-a)x+c(a-b)=0 is

The roots of the equation (b-c)x^(2)+(c-a)x+(a-b)=0

The roots of the equation (b-c) x^2 +(c-a)x+(a-b)=0 are

The roots of the equation (b-c) x^2 +(c-a)x+(a-b)=0 are

If sectheta+tantheta=1 , then one root of the equation a(b-c)x^2+b(c-a)x+c(a-b)=0 is (A) tantheta (B) sectheta (C) costheta (D) sintheta

If a lt c lt b then the roots of the equation (a−b)x^2 +2(a+b−2c)x+1=0 are