Home
Class 12
MATHS
If y=500 e^(7x)+600 e^(-7x), show that (...

If `y=500 e^(7x)+600 e^(-7x)`, show that `(d^2y)/(dx^2)=49 y`

Text Solution

AI Generated Solution

To show that \(\frac{d^2y}{dx^2} = 49y\) for the function \(y = 500 e^{7x} + 600 e^{-7x}\), we will follow these steps: ### Step 1: Differentiate \(y\) to find \(\frac{dy}{dx}\) Given: \[ y = 500 e^{7x} + 600 e^{-7x} \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT|Exercise QUESTION|3 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT|Exercise EXERCISE 5.5|18 Videos
  • APPLICATION OF INTEGRALS

    NCERT|Exercise EXERCISE 8.2|7 Videos
  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.4|5 Videos

Similar Questions

Explore conceptually related problems

If y=500e^(7x)+600e^(-7x), show that (d^(2)y)/(dx^(2))=49y

If y=A e^(m x)+B e^(n x) , show that (d^2y)/(dx^2)-(m+n)(dy)/(dx)+m n y=0

If e^(y)(x+1)=1, show that (dy)/(dx)=-e^(y)

If e^x+e^y = e^(x+y) , show that (dy)/(dx) = -e^(y-x)

If y=e^(-x)cos x, show that (d^(2)y)/(dx^(2))=2e^(-1)sin x

If y=e^(-x)cosx, show that (d^(2)y)/(dx^(2))=2e^(-x)sinx.

y=x+e^(x), then (d^(2)y)/(dx^(2))=

If x+y=e^(x-y) then show that (d^(2)y)/(dx^(2))=(4(x+y))/((1+x+y)^(3))

If e^y(x+1)=1 . Show that (d^2y)/(dx^2)=((dy)/(dx))^2